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Theexplicit analytical expressionof the nonlinear Fourier transform~NFT! of a finite set of data is provided.
Then a simplerecursion relationfor the NFT is constructed as afunctionof the spectral parameter. These tools
provide acomplete characterizationof the nonlinear coherent structures~solitons, breathers, . . .! present in
numerical or experimental data representing the solution, at a given value of time, of a nonlinear evolution
equation~e.g., of the nonlinear Schro¨dinger family!. @S1063-651X~96!12310-2#

PACS number~s!: 03.40.Kf, 63.20.Pw

INTRODUCTION

The inverse scattering~or spectral! transform~IST! is a
method for constructing and solving nonlinear evolution
equations~NEE! @1#. One of those, the nonlinear Schro¨-
dinger equation~NLS! @2#, has become a paradigm as being
the model for a wide variety of physical situations. Actually
the relevant equation generally turns out to benonintegrable,
e.g., NLS with forcing and damping, which renders neces-
sary a numerical analysis@3#. Then, a fundamental question
is the characterization of the solution, as a standard Fourier
analysis will not individualize the intrinsically nonlinear
structures~as solitons!. The same question is even more es-
sential when dealing with experimental data.

Another fundamental aspect is the question of thedis-
cretization of an integrable continuous model, which raises
many interesting questions such as numerical induced chaos
@4#, instabilities in integrable systems@5#, or roundoff error
growth @6#.

Moreover, localized excitations~solitons! in nonlinear
chains has been a subject of intense research for their obvi-
ous physical interest@7–9#. It has been proved, for instance,
that the discreteness generically helps energy localization
@10,11#, that is, it is a mechanism controlling wave collapse
@12#, and also that it allows for the existence of moving
localized modes@13# or standing ones@14#.

In all these studies, the existence and properties of such
localized excitations result merely from a directobservation
of the numerical solution of the model. In short, a soliton is
recognized from its shape, its velocity from the velocity of
the point of maximum amplitude, the frequency of a breather
is obtained from its Fourier spectrum, etc . . . .

However, there exists a tool, thenonlinear Fourier trans-
form ~NFT!, which allows to characterize completely the
nonlinear modes. It is based on IST and has been developed
numerically either for the sine-Gordon family@15# to mod-
elize fluxon dynamics in Josephson junctions, or for the
Korteveg–de Vries model@16# to modelize water waves. In
that case, the method has been successfully applied to ex-
perimental data@17#, for instance, to prove that solitonsge-
nericallyoccur in wave trains. The drawback, however, is on
the one side the complexity of the method, and on the other
side the lack of analytical formula for the NFT.

This paper is intended to provide two results, essential for

the nonlinear analysisof discrete data. The first one is an
analytical explicit formula~11! for the NFT of a discrete set
of data. More precisely, taking advantage of the finiteness of
numerical or experimental data, we obtain the explicit ex-
pression of the Jost solutions, and hence of the complete
spectrum characterization, corresponding to adiscrete finite
potential. The second one is a quite simple recursion relation
~17! for a very straightforward numerical construction of the
spectrum.

Everything is done in the context of the Ablowitz-Ladik
spectral problem@18# ~discrete version of the Zakharov-
Shabat spectral problem!, which means that the nonlinear
Fourier analysis applies here for instance to the NLS family,
that is,

i ] tq~n!5q~n11!1q~n21!22q~n!

6uq~n!u2@q~n11!1q~n21!#1a~n!, ~1!

where a(n) is any perturbation term. The method works
without change for all nonintegrable deformations of the
other integrable NEE related to the Ablowitz-Ladik spectral
problem, such as mKdV, Toda, self-dual network, KdV,
sine-Gordon@19#, or discrete stimulated Raman scattering
@20#. Lastly, the tool can be successfully applied to experi-
mental data, as soon as the measurements are assumed to
represent a train of envelope wave pulses which can be con-
sidered to vanish outside a finite interval. Indeed, in such a
case the model equation for the envelope is likely to obey a
member of the NLS family.

STATEMENT OF THE PROBLEM

Given a finite discrete set of 2(L11) complex valued
dataq(n),r (n) having significant values onn50, . . . ,L and
vanishing outside, the problem is to determine its nonlinear
Fourier spectrum@the scalar case will enter as a reduction,
e.g.,r57q̄ to recover~1!, where the overbar denotes com-
plex conjugation#. This is done by using these data as the
potentialof the Ablowitz-Ladik scattering~or spectral! prob-
lem:

m11~n11!2m11~n!5q~n11!m21~n11!,

m21~n11!2k21m21~n!5r ~n11!m11~n11!,

m12~n11!2km12~n!5q~n11!m22~n11!,
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m22~n11!2m22~n!5r ~n11!m12~n11!, ~2!

for n521, . . . ,L21. A dependence on thespectral param-
eter k is understood everywhere for the matrix valued func-
tion m(k,n) with elementsm i j .

The Jost solutionsm6 are then defined by the following
discrete integral equations

S m11
2 ~n!

m21
2 ~n!

D 5S 10D 1S 2 (
i5n11

L

q~ i !m21
2 ~ i !

(
i50

n

ki2nr ~ i !m11
2 ~ i !

D , ~3a!

S m11
1 ~n!

m21
1 ~n!

D 5S 10D 2S (
i5n11

L

q~ i !m21
1 ~ i !

(
i5n11

L

ki2nr ~ i !m11
1 ~ i !

D , ~3b!

S m12
2 ~n!

m22
2 ~n!

D 5S 01D 2S (
i5n11

L

kn2 iq~ i !m22
2 ~ i !

(
i5n11

L

r ~ i !m12
2 ~ i !

D , ~3c!

S m12
1 ~n!

m22
1 ~n!

D 5S 01D 1S (
i50

n

kn2 iq~ i !m22
1 ~ i !

2 (
i5n11

L

r ~ i !m12
1 ~ i !

D . ~3d!

NONLINEAR FOURIER SPECTRUM

The spectral transform of$q,r % is then completely deter-
mined by the Jost solutionsm1 andm2 as follows. An es-
sential function is thereflection coefficienta6(k) defined as

a25(
0

L

ki r ~ i !m11
2 ~ i !, a15(

0

L

k2 iq~ i !m22
1 ~ i !. ~4!

Due to the finiteness of the support of the potential$q,r %, the
Jost eigenfunction, and hencea6(k), can be defined in the
whole complexk plane. Then the knowledge of the reflection
coefficient in the complex plane allows one to determine
completely the nonlinear Fourier spectrum, which consists of
a continuous part~radiation! related to the values ofa6 on
the unit circleuku51, and of a discrete part~solitons! con-
stituted by the poleskj

2 of a2 in uku.1 andkj
1 of a1 in

uku,1. It is our purpose here to give an explicit formula for
a6 in terms of the complex variablek.

EXPLICIT SOLUTION

Introducing, for (k,n), the new functions

S n11
6

n21
6 D 5S m11

6

knm21
6 D , S n12

6

n22
6 D 5S k2nm12

6

m22
6 D , ~5!

the integral equations~3! become explicitly solvable in terms
of the new matrixn(k,n). This solution can be written in
(k,n),

S n11
2

n21
2 D 5XS 1

a2D , S n11
1

n21
1 D 5XS 10D , ~6!

S n12
2

n22
2 D 5XS 01D , S n12

1

n22
1 D 5XS a1

1 D . ~7!

The matrixX(n) reads

X~n!5 )
i5n11

L

~12Ai !, Ai5S 0 k2 iq~ i !

kir ~ i ! 0 D ~8!

with X(L)51, or else

X~n!512 (
oddl51

L2n S 0 Ql

Rl 0 D 1 (
evenl52

L2n SUl 0

0 Vl
D ~9!

with the following definitions of the functions of the two
variables (l ,n):

Ql5( k2 j 1q~ j 1!k
j 2r ~ j 2!•••k

2 j lq~ j l !,

Rl5( kj 1r ~ j 1!k
2 j 2q~ j 2!•••k

j lr ~ j l !,

Ul5( k2 j 1q~ j 1!k
j 2r ~ j 2!•••k

j lr ~ j l !,

Vl5( kj 1r ~ j 1!k
2 j 2q~ j 2!•••k

2 j lq~ j l !. ~10!

The sums run on all possible differentl indices j i , ordered
for each value of (l ,n) asn11< j 1, j 2,•••, j l<L.

Then we may compute fromX(n) the reflection coeffi-
cientsa6(k) which from their definition~4! read

a2~k!5
( i50
L ki r ~ i !X11~ i !

12( i50
L ki r ~ i !X12~ i !

,

a1~k!5
( i50
L k2 iq~ i !X22~ i !

12( i50
L k2 iq~ i !X21~ i !

. ~11!

Note: the reductionr (n)56q̄(n) leading, e.g., to the NEE
~1!, has the counterpart@20# a1(1/k)56a2( k̄). These two
relations are indeed compatible with~11!.

DATA RECONSTRUCTION

The data$r ,q% can be reconstructed from their spectral
transform $a1,a2% because the solutionsm6(k,n) of ~3!
also solve@20#
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S m11
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m21
6 ~k!

D 5S 10D 2
1

2p i R z2ndza2~z!
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k
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m22
2 ~z!

D
1(

j
~kj

2!2nRes
kj

2

$a2%
k

kj
2

1
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22kS m12

2 ~kj
2!

m22
2 ~kj

2!
D ,

~12a!

S m12
6 ~k!

m22
6 ~k!

D 5S 01D 1
1

2p i R zndza1~z!

z2~170!k S m11
1 ~z!

m21
1 ~z!

D
2(

j
~kj

1!nRes
kj

1

$a1%
1

kj
12k S m11

1 ~kj
1!

m21
1 ~kj

1!
D ,
~12b!

where the integral onz runs on the unit circle.
The system~2! at order zero ink then gives

q~n11!52m12
2 ~n!~21!, r ~n11!52m21

1 ~n!~1!,
~13!

wherem12
2 (n)(21) is the coefficient ofk21 in the Laurent

expansion fork→` of m12
2 (k,n), andm21

1 (n)(1) the coeffi-
cient of k in the Taylor expansion fork→0 of m21

1 (k,n).
These formulas are useful to prove theconsistencyof the

method, that is, that the reconstructed data are the same as
the starting ones~in particular, that they stay in the class of
finite support!. We do not develop this lengthy proof here but
rather make the following remark: the above formulas allow
one tofilter the data just by setting to zero any part of the
spectrum. For instance, if one needs information on the un-
derlying nonlinear coherent structures, one may set to zero
the contributiona6(z),uzu51 to the radiation, and then
solve ~12!. Of course, doing this the reconstructed data do
not stay in the class offinite support potentials, and this
procedure will be meaningful for potentials going to zero fast
enough at both ends.

RECURSION RELATION

From its very definition~9!, the matrixX(n) can actually
be considered as a function also of thevariable L ~remember
that L is the dimension of the data support!. We shall then
denote it byXL(n) and, for instance,Xm(n) has to be under-
stood as obtained from the data of$q(n),r (n)% for
n50,1, . . . ,m, and zero forn¹@0,m#. Then our purpose
here is to derive a recursion relation for the matrix elements
of Xm(n), in order to obtain a recursion relation for the cor-
responding spectral dataam

6(k), spectral transform of
$q(n),r (n)% for n50,1, . . . ,m.

The spectral transform~11! is first conveniently rewritten
as

am
25

Sm
11( j50

m21pj11Sj
, am

15
Pm

11( j50
m21sj11Pj

, ~14!

with the following definitions:

S~m!5 (
n50

m

s~n!X11
m ~n!, P~m!5(

i50

m

p~n!X22
m ~n!,

p~k,n!5k2nq~n!, s~k,n!5knr ~n!. ~15!

Then only the diagonal elements ofXm(n) have to be con-
sidered.

By a careful rewriting of the elementX11
m11(n) out of ~9!,

and by using that obviouslyX11
n (n)5X11

n11(n)51, we obtain

X11
m11~n!5X11

m ~n!1s~m11! (
j5n

m21

p~ j11!X11
j ~n!.

~16!

A similar recursion relation is immediately deduced for
S(m) defined above, and consequently foram

2 . The same
computation being made forX22

m11(n) leads finally to

a0
25r ~0!, am11

2 5
sm111am

2

11pm11am
2 ,

a0
15q~0!, am11

1 5
pm111am

1

11sm11am
1 . ~17!

If the data to be analyzed are given on@0,L#, the spectral
transforma6(k) is constructed from the above recursion
relation by runningm from 0 toL. To illustrate the preceding
results we consider two examples.

EXAMPLE 1: TWO-POINT DATA

In the case of two-point information (L51), by direct
application of the above formula, we get

a1
25

r ~0!1kr~1!

11k21q~1!r ~0!
, a1

15
q~0!1k21q~1!

11kq~0!r ~1!
. ~18!

An obvious and natural consequence is that two point data
cannotrepresent a pure soliton solution which would require
that a6 vanish on the unit circleuku51. The important in-
formation is that one can readily conclude about the presence
of a soliton if uq(1)r (0)u.1 ~which ensures a pole ofa2 in
uku.1) or/and if uq(0)r (1)u.1 ~which ensures a pole of
a1 in uku,1).

EXAMPLE 2: TRUNCATED SOLITON

We consider the one soliton solution~reductionr52q̄)
centered onm5n0 and cut to the left ofm50 and to the
right of m5L defined by (h0, u0 arbitrary constants and
b.0),

q~m!5
eih0m1u0

tm
, tm5

cosh~bm2bn0!

sinhb
~19!

for m50,1, . . . ,L and q(m)50 for m,0 andm.L. By
using the recursion formula~17! the spectral transform can
be explicitly computed giving (j5ke2 ih0)
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aL
152eiu0j2L

jL12tL2jL11tL112~jt212t0!

jL122~jtL112tL!~jt212t0!
.

~20!

A simple analysis forL@n0 shows thataL has a pole for
uku,1 if and only if n0.0. This means that the presence of
a soliton in a wave train is detected with this method by
analyzing only afinite portionof it. In the example consid-
ered, it is in fact enough to catch half of the soliton.

CONCLUSION

The method is quite simple to use and it is of wide appli-
cation: the formulas~11! provide an explicit function of the
complex variablek which allows one to completely charac-
terize the nonlinear Fourier spectrum of the data

$r (n),q(n)%. In particular, the roots of the denominator of
a2 in the regionuku.1, and those ofa1 in uku,1, furnish
the nonlinear coherent structures present in the data. For
practical applications, the recursion relations~17! provide a
quite efficient numerical code to generate the nonlinear Fou-
rier spectrum of any finite data. These relations possess a
continuous counterpart, which will be studied, together with
details and applications, in a forthcoming paper.
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