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Nonlinear spectral characterization of discrete data
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Theexplicit analytical expressioaf the nonlinear Fourier transfor(ilNFT) of a finite set of data is provided.
Then a simpleecursion relationfor the NFT is constructed asfanctionof the spectral parameter. These tools
provide acomplete characterizationf the nonlinear coherent structuréslitons, breathers..) present in
numerical or experimental data representing the solution, at a given value of time, of a nonlinear evolution
equation(e.g., of the nonlinear Schdinger family. [S1063-651X%96)12310-2

PACS numbd(s): 03.40.Kf, 63.20.Pw

INTRODUCTION the nonlinear analysisof discrete data. The first one is an
analytical explicit formula(11) for the NFT of a discrete set
The inverse scatteringpr spectral transform(IST) is a  of data. More precisely, taking advantage of the finiteness of
method for constructing and solving nonlinear evolutionhumerical or experimental data, we obtain the explicit ex-
equations(NEE) [1]. One of those, the nonlinear Séhro Pression of the Jost solutions, and hence of the complete
dinger equatioNLS) [2], has become a paradigm as beingspectrum characterization, corresponding tdiscrete finite

the model for a wide variety of physical situations. Actually potential The seco_nd one is a quite s_imple recursipn relation

the relevant equation generally turns out torig@integrable (17) for a very straightforward numerical construction of the
, ; . X spectrum.

€.g., NLS with forcing and damping, which renders neces- Everything is done in the context of the Ablowitz-Ladik

sary a numerical analys|8]. Then, a fundamental question. spectral problem{18] (discrete version of the Zakharov-

is the characterization of the solution, as a standard Fouri habat spectral problemwhich means that the nonlinear

analysis will not individualize the int.rins.ically nonlinear o gy analysis applies here for instance to the NLS family,
structures(as solitong The same question is even more es-y .+ ic

sential when dealing with experimental data.

Another fundamental aspect is the question of the idq(n)=q(n+1)+q(n—1)—2q(n)
cretization of an integrable continuous modelhich raises )
many interesting questions such as numerical induced chaos la(m|Ta(n+1)+g(n—1)]+a(n), (1)
[4], instabilities in integrable systen§], or roundoff error

where a(n) is any perturbation term. The method works
growth[6]. _ o _ _ _ without change for all nonintegrable deformations of the
Moreover, localized excitationgsolitong in nonlinear  oiher jntegrable NEE related to the Ablowitz-Ladik spectral
chains has been a subject of intense research for their Obvﬂ)'roblem, such as mKdV, Toda, self-dual network, KdV,
ous physical intereg7—9]. It has been proved, for instance, gjne_Gordon[19], or discrete stimulated Raman scattering
that the discreteness generically helps energy IocahzaﬂorQO]_ Lastly, the tool can be successfully applied to experi-
[10,11, that is, it is a mechanism controlling wave collapsementa| data, as soon as the measurements are assumed to
[12], and also that it allows for the existence of moving rgpresent a train of envelope wave pulses which can be con-
localized mode$13] or standing oneg14]. sidered to vanish outside a finite interval. Indeed, in such a

In all these studies, the existence and properties of SUcfse the model equation for the envelope is likely to obey a
localized excitations result merely from a dir@tiservation 1 omper of the NLS family.

of the numerical solution of the model. In short, a soliton is

recognized from its shape, its velocity from the velocity of STATEMENT OF THE PROBLEM
the point of maximum amplitude, the frequency of a breather o )
is obtained from its Fourier spectrumget. . Given a finite discrete set of Rf+1) complex valued

However, there exists a tool, tmenlinear Fourier trans- ~ datag(n),r(n) having significant values on=0, ... L and
form (NFT), which allows to characterize completely the vanishing outside, the problem is to determine its nonlinear
nonlinear modes. It is based on IST and has been developdwurier spectrunjthe scalar case will enter as a reduction,
numerically either for the sine-Gordon familg5] to mod- ~ €.9.,r =+ to recover(l), where the overbar denotes com-
elize fluxon dynamics in Josephson junctions, or for thePlex conjugation This is done by using these data as the
Korteveg—de Vries moddlL6] to modelize water waves. In potentialof the Ablowitz-Ladik scatteringor spectral prob-
that case, the method has been successfully applied to elem:
perimental dat417], for instance, to prove that solitorge-

: | : : +1)— =q(n+ +
nerically occur in wave trains. The drawback, however, is on put D= pu(n=q+Duy(n+1),

the one side the complexity of the method, and on the other wo(N+1) =K Luo(n)=r(n+1)uy(n+1),
side the lack of analytical formula for the NFT.
This paper is intended to provide two results, essential for N+ 1)—Kuia(n)=q(n+1)usp(n+1),
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o N+ 1) — po(M)=r(n+ 1) u(n+1), 2) the integral equation@) become explicitly solvable in terms
of the new matrixv(k,n). This solution can be written in
forn=—1,... L—1. A dependence on thepectral param- (k,n),

eter kis understood everywhere for the matrix valued func-

tion u(k,n) with elementsu;; . v 1 vy 1
The Jost solutiong.™ are then defined by the following X\, =X L] (6)

. . . o 125 0
discrete integral equations

Va1

L o V1o 0 vy, a’t
Srm\ (1 - 2 dual) B e Y I s A (7)
u )):(0)+ A . (33
HaiN izo K=" (i) e gy(i) The matrixX(n) reads
= 0 k'a(i)
L X(n)= 1-A), Aiz(i _ ) 8
L) (1 S g m= 11, a-a) iy o |
M1 i=n+1
= - ,  (3b .
,u*(n)) (0) Lo with X(L)=1, or else
” 3 K L L
[0 Q (U 0

L . X(n)_l_oddzzl (R| 0 ) +eve2r1:2 ( 0 V|) (9)
Sl (ol |12, KOsl
12 ):( )_ 1o (30) with the following definitions of the functions of the two
wp(n)) |1 i o ’ variables (,n):

e 2ry)

; Q=2 kq(jpkar(jp)- - -k (),
shml (o) | 2K a0
Mg(n)):(l)* L - ©d Ri=> Kr(jk2q(j,)- - KIr(j)),

- 2 rad)

U= kiq(jpkiar(jp)---Kiir(j)),
NONLINEAR FOURIER SPECTRUM

The spectral transform dfq,r} is then completely deter- . ‘ '
mined by the Jost solutions* and u~ as follows. An es- V=, Kir(j )k 2q(j,) - - -k7iig(j). (10
sential function is theeflection coefficient™ (k) defined as

L L The sums run on all possible differehindicesj;, ordered
a” = Kr(iun(i), a™=> k7lgli)uL(i). @ for each value ofl(;n) asn+1<j,<j,<---<j;<L.
; (Daall) ; A w2l Then we may compute frolX(n) the reflection coeffi-
cientsa™ (k) which from their definition(4) read
Due to the finiteness of the support of the potertipt }, the

Jost eigenfunction, and henee (k), can be defined in the S KT (i) Xas(i)
whole complex plane. Then the knowledge of the reflection a (k)= T —,
coefficient in the complex plane allows one to determine 1= 2ok (i) Xpali)
completely the nonlinear Fourier spectrum, which consists of .

a continuous partradiation) related to the values af* on N EiL:Ok*'q(i)Xzz(i)
the unit circle|k|=1, and of a discrete patsolitons con- a (K)=715rC K Q) Xoq1)
stituted by the polek;” of o~ in |[k|>1 andk;" of a™ in =0

|k|<1. It is our purpose here to give an explicit formula for N
a™ in terms of the complex variable.

(11)

ote: the reduction(n)= +q(n) leading, e.g., to the NEE
(1), has the counterpaf20] o™ (1/k) =+ a (k). These two

relations are indeed compatible withl).
EXPLICIT SOLUTION

Introducing, for k,n), the new functions DATA RECONSTRUCTION
" + . KNy The data{r,q} can be reconstructed fro+m their spectral
( il): ':]Lli , ( lf) _|° My (5) transform{a*,a"} because the solutiong™(k,n) of (3)
vor) \K'ma V22 H22 also solve[20]




54 NONLINEAR SPECTRAL CHARACTERIZATION OF ... 5741

pa0\ (1) 1 [ e () k| miAd) " i
. = —— 0 - S(m)y= 2, s(n)XTy(n), P(m)= n)Xox(n),
Ml(k)) O) 2t § AT 0K 2l ko) (m)= 2 s(mX§n),  P(m)=2, p(n)Xz4n)
£ (k) Rega e L[ #) plkm=k~"q(n),  s(km=k"r(n).  (15)
T ki ki =K\ uaaki)) _
i Then only the diagonal elements ¥f'(n) have to be con-
(129  sidered.

By a careful rewriting of the elemeit]}" *(n) out of (9),
1K) (0) 1 Mdeat(f) Mﬁ(()) and by using that obvioush],(n)=X7;*(n)=1, we obtain
pak)) \1) 7 2mi J =150k | ug(2) m-1 |

+ XTI ) =X{y(n) +s(m+1) X p(j+1)Xiy(n).
S () Redat )| 0 )) a
_ : atl—— ,
T TR R k) (16
]
(12b) A similar recursion relation is immediately deduced for
S(m) defined above, and consequently f®f,. The same
. - m+1 .
where the integral o runs on the unit circle. computation being made fofz;"“(n) leads finally to
The systen(2) at order zero irk then gives 3
_ r(O) _ Sm+l+a'm
adn — y (44 P ——
q(n+1)=—p (MY, r(n+1)=—uz(m?, ° " 14 pan,
(13
pm+1+a’+
where u1,(n)("Y is the coefficient ofk ! in the Laurent @y =q(0), a:ﬁﬂzﬁ- (17)
expansion fork—o of u,(k,n), and u;,(n)® the coeffi- meLm
cient ofk in the Taylor expansion fok—0 of uz(k,n). If the data to be analyzed are given pBiL], the spectral

These formulas are useful to prove ttensistencyf the  {ransform a* (k) is constructed from the above recursion

method, that is, that the reconstructed data are the same ggation by runningn from 0 toL. To illustrate the preceding
the starting onegin particular, that they stay in the class of regyits we consider two examples.

finite support. We do not develop this lengthy proof here but

rather make the following remark: the above formulas allow )

one tofilter the data just by setting to zero any part of the EXAMPLE 1: TWO-POINT DATA
spectrum. For instance, if one needs information on the un- |y the case of two-point informationL& 1), by direct
derlying nonlinear coherent structures, one may set to zergpplication of the above formula, we get

the contributiona™(¢),|{|=1 to the radiation, and then

solve (12). Of course, doing this the reconstructed data do 1 (0)+kr(1) . q(0)+k q(1)

not stay in the class ofinite support potentialsand this a; =

14k Lq(Dr(0)’ T 1+kq(0)r(1) (18

procedure will be meaningful for potentials going to zero fast

enough at both ends. An obvious and natural consequence is that two point data

cannotrepresent a pure soliton solution which would require
RECURSION RELATION that «™ vanish on the unit circlék|=1. The important in-
formation is that one can readily conclude about the presence
of a soliton if|g(1)r (0)|>1 (which ensures a pole a@f~ in
|k|>1) or/and if |q(0)r(1)|>1 (which ensures a pole of
a” in |k|<1).

From its very definition9), the matrixX(n) can actually
be considered as a function also of traiable L (remember
thatL is the dimension of the data suppoVe shall then
denote it byX"(n) and, for instanceX™(n) has to be under-
stood as obtained from the data dfj(n),r(n)} for
n=0,1,...m, and zero forn&[0m]. Then our purpose EXAMPLE 2: TRUNCATED SOLITON
here is to derive a recursion relation for the matrix elements
of X™(n), in order to obtain a recursion relation for the cor-
responding spectral datar,,(k), spectral transform of

We consider the one soliton solutigreductionr = —q)
centered oom=ng and cut to the left oin=0 and to the
right of m=L defined by o, 6, arbitrary constants and

{q(n),r(n)} forn=0,1,...m. b>0),
The spectral transforr(ilLl) is first conveniently rewritten
as el 7om+ o cosiibm—bny)
q(m)= D T (19
Tm sinhb
a 24 at :L (14)
"1+ Sip S " 1+EgsL Py for m=0,1,...,L andq(m)=0 for m<0 andm>L. By

using the recursion formulél?7) the spectral transform can
with the following definitions: be explicitly computed giving {=ke'"0)



5742 M. BOITI, J. LEON, AND F. PEMPINELLI 54

. o LGP T (67— 7o) {r(n),q(n)}. In particular, the roots of the denominator of
a =—e"¢ TT2_ — - a~ in the region|k|>1, and those ot ™ in |k|<1, furnish
& (ErLra—m)(€T-1—70) : -
the nonlinear coherent structures present in the data. For
(20) : L . : .
practical applications, the recursion relatiqdg) provide a
A simple analysis folL>n, shows thate;, has a pole for quite efficient numerical code to generate the nonlinear Fou-
|[k|<1 if and only if no>0. This means that the presence of rier spectrum of any finite data. These relations possess a
a soliton in a wave train is detected with this method bycontinuous counterpart, which will be studied, together with
analyzing only &finite portionof it. In the example consid- details and applications, in a forthcoming paper.
ered, it is in fact enough to catch half of the soliton.
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